SmartAnALOG All Automated digital Outcrop

Enhancing reservoir characterization & modeling with outcrop reservoir analogues

Outline

- 1. SmartAnALOG Project
- 2. Acquisition of 3D outcrop model
 - State of the art
 - Benefits of our choice
 - Multiscale & multi focal acquisitions
- 3. Virtual Outcrop Analysis Software : VIRTUOSO
 - The Ainsa Channel an example of a complete workflow

Outline

1. SmartAnALOG Project

- 2. Acquisition of 3D outcrop model
 - State of the artBenefits of our choice
 - Multiscale & multi focal acquisitions
- 3. Virtual Outcrop Analysis Software : VIRTUOSO
 - The Ainsa Channel an example of a complete workflow

SmartAnALOG?

Objectives of the SmartAnALOG project

- 3D outcrop modelling
- Import 3D geological outcrop studies into a geomodelisation software
- Light and fast acquisition
- Moderate processing time
- Easy integration of field data
- Link with geomodelers (Petrel, Gocad)

To enhance reservoir characterization & modelling

SmartAnalog Workflow

- 1. SmartAnALOG Project
- 2. Acquisition of 3D outcrop model
 - State of the art
 - Benefits of our choice
 - Multiscale & multi focal acquisitions
- 3. Virtual Outcrop Analysis Software : VIRTUOSO
 - The Ainsa Channel an example of a complete workflow

Acquisition : State of the Arts

LIDAR (Light Detection And Ranging)

Photogrammetry

The choice was obvious ...

Benefits of photogrammetry acquisition & modelisation

Easy & fast acquisition

- Easy : just know how to take a good picture
- ex: Ainsa 30 minutes for ground acquisition
 - 1 hour for aerial acquisition (but greater coverage)
- Automatic method
- MultiScale & MultiFocal acquisition
- High Precision
 - 1 to 50 cm in relative
 - 2 to 3 m in absolute
- Low cost acquisition
 - A camera with a prime lens
 - A handeld GPS

Relative precision : Geometry and Scale of the 3D model

Absolute precision :

ADSOIUTE precision : Positionning accuracy of the 3D model in a cartographic reference system

RTK GPS positionning : Y = 4699686.995 X = 759139.036 Z = 488.760

<!--Origin in Spatial Reference System--> <SRSOrigin>759285,4699562,0</SRSOrigin>

X= -143.604 + 759285 = **759141.396** Y= 124.512 + 4699562 = **4699686.512** Z = 487.129 + **0** = **487.129**

Jacob Staff measured on the model

$\Delta x = 2.36 \text{ m} \Delta y = 0.48 \text{ m} \Delta z = 1.63 \text{ m}$

MultiScale & multi focal acquisition

Sony NEX7 – 19mm lens

Limits of the air/ground texture

Canon5D – 24mm lens

- 1. SmartAnALOG Project
- 2. Acquisition of 3D outcrop model
 - States of the arts
 - Benefits of our choice
 - Multiscales & multi focal acquisitions
- 3. Virtual Outcrop Analysis Software : VIRTUOSO
 - The Ainsa Channel example of a complete workflow

VIRTUOSO (Virtual Outcrop Analysis Software)

SMARTANALOG WORKFLOW (IFPEN)

Virtuoso : Virtual Outcrop Analysis software

- Polylines digitalization (illustrating geologic horizon, fault and fracture
- Property painting (e.g. Facies)
- Strike/Dip measurement
- Distance measurement

- Polylines & Facies Export in ascii format – Easy to import in Gocad/Petrel
- Object transparency control (Display enhancement)

Outcrop interpretation

Horizon picking

- Litho-units definition
- Export in geomodel
 - Surface construction
 - To build the reservoir grid

Outcrop interpretationProperty painting (facies)

Outcrop interpretation

Fracture picking & semi-automated recognition

Model construction Geomodel

1 - Bounding horizons picked directly on the 3D outcrop model

2 - Surfaces reconstructed from polylines and structural dips

3 - Pointset extracted from the photogrammetric model

IFP E

4 - Geological grid built from the surfacic model

2 - Variograms are computed from the facies pointsets

Geostatistics

1 – Computed from data interpreted on outcrop, directly from the interpretation (exported cloud of points)

Geological modelling

<u>Objectives</u>: Compare models using conventional dataset and 3D outcrop interpretation

Pseudo 1D dataset

 3 pseudo-wells with facies interpretation

VS

Fully interpreted outcrop

- outcrop configuration (channel bottom confinement)
- Picks corresponds to pseudowells

Results

Dataset: pseudowells vs. outcrop interpretation

Full outcrop interpretation

- Continuous dataset
- Heterogeneity continuity well represented

Pseudo 1D dataset

- 4 pseudowells with facies interpretation
- Very smoothed facies distribution
- Heterogeneity continuity poorly represented

SmartAnALOG video

Innovating for energy

www.ifpenergiesnouvelles.com